
Equivalent Euclidean formulation of special relativity

Application to the lifetime of particles

Translation of the article by Alain Kirèche published in Le Bulletin de l'Union des
Professeurs de Physique et de Chimie, 2022, 116 (1048), pp.1001-1014 under the

title: 

Formulation euclidienne équivalente de la relativité restreinte
Application au temps de vie des particules

Abstract

The  classic  formulation  of  special  relativity  is  based  on  Minkowski's  pseudo-

Euclidean space-time. However, there is an alternative Euclidean formulation of the

theory which gives identical results while considerably simplifying the mathematic

tools and graphics necessary for demonstrations. After having established, within the

framework of this formulation, the equations of the Lorentz transformation, founders

of the theory,  it  is proposed as an application the measurement of the lifetime of

particles, in particular muons.
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INTRODUCTION
Shortly after its origin, special relativity was formulated in the framework of a non-
Euclidean  space  (Minkowski  pseudo-Euclidean  space-time),  requiring  the  use  of
quadrivectors  with  pseudonorms  that  can  take  negative  values  and  hyperbolic
geometry,  which  makes  difficult  to  read  the  associated  Minkowski  diagrams.
However, there are several versions of Euclidean special relativity which avoid this
type of paradox, but the most developed involve a privileged frame of reference (neo-
Lorentzian relativity)  [1]  and therefore call  into question  the very foundations of
relativity  as  exposed by Albert  Einstein  in  1905.  These  approaches  can therefore
legitimately leave one skeptical, especially since they lead to results different from
those obtained in classical relativity.

The version that we are going to develop here does not call into question the
special relativity of Albert Einstein since it leads to exactly the same conclusions as
the  latter,  and  as  such,  it  can  be  perceived  as  an  equivalent  formulation  to  the
commonly taught formulation. With the advantage over the latter, however, of using
only classical vectors and circular geometry, and, therefore, of establishing relatively
familiar diagrams to treat in a particularly visual manner certain classical problems of
special relativity, such as for example the  lifetime dilation  of muons created in the
upper atmosphere compared to their proper lifetime.

1. THE BASES OF AN ALTERNATIVE EUCLIDEAN FORMULATION OF
SPECIAL RELATIVITY
1.1. From Minkowski space-time to equivalent Euclidean space-time
As in all versions of Euclidean relativity, we will start by modifying the coordinates
of Minkowski space-time [2]. In the latter, a particle is located in an inertial reference
frame  (R) by its space coordinate  x (to simplify the expressions, we will choose a
space-time  with  one  space  dimension,  instead  of  the  usual  three)  and  its  time
coordinate  t (measured by the clock of  an observer  at  rest  in  (R)),  or,  better,  its
coordinate  ct, where  c is the speed of light in a vacuum, so as to homogenize the
coordinates of space and time. The proper time  τ of the particle, measured by the
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clock of  the  particle,  makes  it  possible  to  define  the  space-time interval  s=cτ,  a
quantity  invariant  by  change  of  inertial  reference  frame.  Figure  1  illustrates  the
motion, in a one-dimensional Minkowski space-time, of two particles  P0 and P, the
first being spatially at rest and the second being moving with a spatial speed vP, the
two particles being initially at the origin O of an inertial reference frame at rest with
respect to the observer.

Minkowski space-time is pseudo-Euclidean. Indeed, in a Euclidean space-time,
the square of the space-time interval  s of the particle P would be such that  s2 =x2 +
(ct)2, while the particular space-time metric of Minkowski imposes that  s2 = –  x2 +
(ct)2.  The “–” sign appearing in this metric has a detrimental  consequence on the
reading of the diagram: the length of the segment  OP does not correspond to the
value of s.

To move from Minkowski pseudo-Euclidean space-time to a Euclidean space-
time,  where  we  find  the  usual  metric  of  Galilean  relativity  (with  an  additional
dimension), let's swap the roles of t and x. Thus, in the space-time of our alternative
Euclidean formulation, which we call Equivalent Euclidean Formulation of Special
Relativity (EEFSR), a particle is identified in an inertial frame of reference (R) by its
space  coordinate  x and its  coordinate  of  proper  time  τ (or,  better,  s=cτ,  so  as  to
homogenize the dimensions of space and time). Some authors call such a space-time
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Figure 1 – Representation of the displacement during the duration 
t of two particles P0 (spatially at rest) and P (in motion with a 
constant spatial speed vP) in a Minkowski space-time with 1 space 
dimension x (the time coordinate t is replaced by the coordinate ct 
to homogenize the dimensions of time and space). In this diagram, 
the segment OP does not represent the space-time interval s = cτ, 
where τ is the proper time of the particle P, since s2 = - x2 + (ct)2 ≠ 
x2 + (ct)2.
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a proper space-time [3], but we continue to call it space-time, for convenience. The
time t (or ct) becomes a parameter. However, in the case of a particle P with velocity
vector  vP =  vP  ex in  space  (with one dimension)  emitted in  O at  time  t  = 0,  the
parameter ct can be considered equivalent to the coordinate of P along a new ct-axis
defined by the unit vector e = OP / ct, as illustrated in Figure 2 below.

In this Euclidean space-time, the position vector of a particle P at time t in the
inertial reference frame (R) is written:

                                 OP = x ex + s es. (1)

Considering the case of a particle emitted in O at time t = 0 moving with a constant
spatial speed in the reference frame (R), we can write (see Figure 2):

                  OP = ct e. (2)

By squaring equations (1) and (2), we get:

OP2 =(ct)2 =x2 +s2

that can be written:
s2 =(ct)2 – x2.  (3)
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Figure 2 – Euclidean space-time (ex, es and e are the unit vectors associated 
respectively with the x-, s- and ct- axes of an inertial reference frame (R)). The 
particle P having a constant spatial speed, the space-time interval ct which it 
travels during the duration t corresponds to the coordinate of P along the ct-axis. 
Its coordinate along the s-axis is then s = ct /γ (cf. Equation (4)). During the 
same duration t, the particle P0, at rest in (R), travels the same space-time 
interval ct, corresponding to the coordinate s0 of P0 along the s-axis.
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We thus find the expression for the square of the Minkowski space-time interval, an 
expression which makes it possible to establish, knowing that x = v t, that:

s = ct / √1 – v2
/c2 = ct / γ (4) 

(where γ = 1 / √1 – v2
/c2  ≥ 1 is the Lorentz coefficient), expression which also 

allows us to write that:
t = γ τ,  (5)

relationship which, in special relativity, expresses the “time dilatation” [4-5].

However, in  a Euclidean space-time, the space-time interval is not  s,  but  ct

(one could set  s = ct and define  s as the new space-time interval, but, to preserve

formal analogy with Minkowski's formulation, it  was agreed here to keep  s = cτ,

where s is now the distance traveled by light during the proper time interval τ). Under

these conditions, the diagram in Figure 2 clearly indicates that, for a particle P0 at rest

in (R), whose proper time is equal to t, we have s0 = ct > s= ct / γ (see equation (4)):

the reading of the diagram is therefore consistent with the expected results!

1.2. Representation of a change of reference frame
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Figure 3 – Representation of a change of reference frame in a 
Minkowski diagram. The axes of the frame (R) rotate through 
an angle φ which depends on the speed v of the frame (R’).

Pct

x

x’

ct’

x’ (R’)

ct’

φ

φ



How  to  represent  a  change  of  reference  frame  on  a  Euclidean  space-time

diagram? In a Minkowski diagram, the invariance of the space-time interval leads to

a rotation of the x- and ct- axes of the reference frame (R) (see Figure 3).

Can the same be true in Euclidean space-time? Obviously, no. The invariance

of  s suggests rather that the  s-axis remains the same for all  the inertial  reference

frames, which imposes a translation of the reference frames between them along the

x-axis. However, seen from the reference frame (R), the reference frame (R’), moving

with a spatial speed v, undergoes a length contraction along the x-axis, which requires

introducing unit vectors “seen from (R)”, like (ex’)R and (e’)R in the diagram Figure 4,

or  “seen  from  (R’)”,  like  (ex)R’   and (e)R’ in  the  diagram  Figure  5.  Indeed,  the

invariance of the speed  of  light allows to establish the following relationships (see

Appendix 1):

(ex’)R = ex / γ   (6)

 (ex)R’ = ex’ / γ.  (7)
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Figure 4 – Euclidean space-time diagram showing a particle P and 
an inertial reference frame (R') as seen from the inertial frame (R). 
The reference frame (R'), in translation along the x-axis at the spatial 
speed v, undergoes a length contraction along the x-axis such that 
the unit vector ex’ seen from (R) becomes (ex’)R = ex / γ (see Appendix 
1), which also leads to a contraction of the vector e’.



Let  us  now  see  how  it  is  possible  to  find  the  equations  of  the  Lorentz

transformation during a change of inertial reference frame in a Euclidean space-time.

2. EEFSR AND LORENTZ TRANSFORMATION

2.1. Transformation of x and x’ coordinates

Consider  a  particle  P moving,  in  a  reference  frame (R),  with  a  spatial  speed  vP.

Initially, the particle P is at the origin O of an inertial reference frame (R) (see Figure

4). Under these conditions, the position vector of the particle P at time t is given by

Equations (1) and (2), hence:

OP = x ex + s es = ct e.  (8)

In a reference frame (R’) in uniform rectilinear motion with respect to (R) such that 

vR’/R = v ex , whose origin O’ coincides with O at time t = t’ = 0, the position vector of 

the particle P becomes (see Figure 5):

O’P = x’ ex’ + s es  = ct’ e’.    (9)

However, as we can see in the diagram Figure 4, seen from (R), the position vector of

P in (R’) becomes, taking into account Equation (6):

(O’P)R =  x’ (ex’)R + s es = (x’ / γ) ex + s es. (10)

7

x (R)

s

O (ex)R’

es

x’ (R’)

s

O’ ex’

es

x
x’

s s

- v

P
ct

ct’

(e)R’ e’

ct
ct’

Figure 5 – The same situation as in figure 4, but 
seen from the inertial reference frame (R’). This 
time, it is the unit vectors ex and e of (R) which are 
contracted, with (ex)R’ = ex’ / γ.



However, the diagram Figure 5 also allows us to write, since xO’ = vt, that:

(O’P)R =  (x - xO’) ex + s es = (x - vt) ex + s es. (11)

Comparing Equations (10) and (11), it comes:

x’  = γ (x – vt).      (12)

This is the well-known equation of the Lorentz transformation relative to the space
coordinate x.

The inverse equation is obtained in the same way, but by reasoning from the

diagram Figure 5 and taking into account the Equation (7):

(OP)R’ =  x (ex)R’ + s es = (x / γ) ex + s es (13)

and: 

(OP)R’ =  (x’ - x’O) ex + s es = (x’ + vt’) ex + s es (14)

since xO’ = - vt’.

By comparing Equations (13) and (14), we find the wanted equation:

x =  γ (x’ + vt’).  (15)

2.2. Transformation of coordinates t and t’

The equations relating to t and t’ can be obtained using Equation (3). Indeed, taking 

into account the invariance of s, we can write that:

s2 = (ct)2 – x2 = (ct’)2 – x’2.

By replacing x’ by its expression from Equation (12), we obtain:

(ct)2 – x2 = (ct’)2 – γ2(x – vt)2.

This relationship makes it possible to establish, after development and simplification 

(see Appendix 2), that:

ct’ = γ (ct – vx/c).  (16)
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By replacing x in this last equation by its expression from Equation (15) and 

rearranging the terms, we obtain the inverse equation:

ct = γ (ct’ + vx’/c).  (17)

2.3. Consequences

The Equations (12), (15), (16) and (17) correspond to the equations of the Lorentz

transformation during a change of  inertial  reference frame. They are the basis  of

special  relativity  stated  by  Albert  Einstein.  They  allow,  for  example,  to  find  the

relativistic composition law for velocities (see Appendix 2):

vp’ = 
vP−v

1−v p . v /c2 . (18)

As surprising as it  may seem,  EEFSR  is indeed a rigorous formulation of special

relativity in a purely Euclidean framework!

3. APPLICATION TO MEASURING THE LIFETIME OF PARTICLES

3.1. Lifetime dilation of a moving particle

Let us consider, in an inertial reference frame (R), two particles  P0 and P1 with the

same  proper  lifetime  τV (measured  at  the  clock  of  each  particle)  created

simultaneously in  O at time t  = 0. If these two particles are spatially  at rest in (R),

their decays will obviously be simultaneous1 at time t = τV (see Figure 6).

What happens now if the particle P1 is created, no longer spatially at rest, but

with the spatial speed v? As shown in the diagram in Figure 7, when P0 decays at time

t0 = τV, the particle P1 does not decay, since its proper time is then less than τV. Indeed,

as this same diagram shows, the decay of P1 will only take place at time t1 = γ τV > t0:

for an observer spatially at rest in (R), the decay of the two particles does not is no

longer simultaneous, the particle in motion decays after the particle at rest.

1 We consider here that the particles decay after a time equal to τV. As τV is in reality an average

lifetime, experimental verification cannot be carried out than on a large number of particles [4].
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Figure 6 – Simultaneous decays of two particles P0 (blue 
path) and P1 (red path) with the same proper lifetime τV at 
rest in (R).
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Figure 7 – Decays in (R) of two particles P0 (at rest, blue 
path) and P1 (in motion, red path) with the same proper 
lifetime τV. The two decays are not on the same line of 
simultaneity: in (R), the moving particle decays after the 
resting particle P0.

e1

Line of simultaneity with the 
decay of P1.

Thus, the particle P1, instead of traveling the distance d0 = vτV  which we would expect

if relativistic effects did not exist, travels, taking into account special relativity, the

distance (see Figure 8):

d = x1= vτV = v γ τV = γ d0 > d0.   (19)
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Figure 8 – The distance d = x1 = vt1 = γvτV traveled in (R) 
by the particle P1 during its lifetime t1 is greater than the 
distance d0 = v.τV that the particle would have traveled if 
the relativistic effects did not exist.

d0 d=x1

e1

This result is confirmed by the study of the average distance traveled in the

atmosphere by muons, particles created at several kilometers of altitude with a speed

close to that of light. Indeed, the average proper lifetime of muons is 2.2 μs, which

would allow them, if relativistic effects did not exist, to travel on average around 650

m. However, observations show that a number of muons pass through the atmosphere

until reaching the ground, which confirms that their average lifetime is much greater

than 2.2 μs, as predicted by special relativity. For example, at a speed of 0.995c (i.e.

for a Lorentz factor γ = 10), we calculate an average lifetime of 22 μs and an average

distance traveled of approximately 6.5 km, which is confirmed by experiments [4].

3.2. Moving particle point of view

What would we observe in a reference frame (R’) in motion with a spatial speed

vR’/R= v ex with respect to (R), therefore in a reference frame in which the particle P1

would be at rest and the particle P0 moving with a speed v0’= – v ex? The diagram in

Figure 9 represents this situation. We can see that, if the particle P1 (red path) decays,

as it should, at the instant t1’ = τV, the particle P0 decays at the instant t0’ = γ τV > t1’,

therefore after the particle P1. This, of course, is not surprising, since the situation in

(R’) is the reciprocal of the situation in (R), with, this time, P1 at rest and P0 in motion

(note that the lines of simultaneity with a given event do not coincide in (R) and (R’):

11



s

O’ ex’

es

x’ (R’)

ct0’= γcτV

ct1’ = cτV

ct0’

ct0’

e0’

Line of simultaneity with the 
decay of P0 in (R’).

Line of simultaneity with the 
decay of P1 in (R’).

- d’

Figure 9 – In the reference frame (R’) attached to P1, P1 
decays at the date t1’ = τV (red path) while P0 decays at the 
later date t0’ = γτV (blue path). Furthermore, the distance 
traveled by a point at rest in (R), such as for example P0, will 

be equal to d’ = vτV = d / γ.

as  predicted  by  special  relativity,  two  simultaneous  events  in  (R)  are  no  longer

simultaneous in (R’)).

3.3. Relativistic length contraction

Finally, it is interesting to note that, when P1 decays, the distance traveled in (R’) by

the particle P0 (and therefore by any point at rest in (R)) is equal to (see Figure 9):

d’ = v τV = d / γ < d.   (20)

We conclude that an observer attached to a muon with a proper lifetime τV = 2.2 ns

moving at a speed of 0.995c will consider having traveled in the Earth's atmosphere

the distance  d’ = 650 m, and not the distance  d = 6.5 km measured by a terrestrial

observer, between the creation of the muon and its decay. We find length contraction

in  the  direction  of  displacement  introduced  in  subparagraph  1.2.,  which  can  be

written here, taking into account Equation (7):

d’ ex’ = d (ex)R’ = d ex’ / γ.  (21)
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Figure 10 – When P1 (red path) decays, its spatial 
displacement in (R) seen from (R’) can be written 
(OO’)R’ =’ d.(ex)R. Simultaneously, the particle P0 (blue 
path) moved in (R’) according to (O’O)R’ = - d’.ex’. It 
follows that (OO’)R’ = d’.ex’ = d.(ex)R’ = d.ex’ / γ.
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vR/R’ = - v.ex’

We can illustrate Equation (21) by the diagram in Figure 10 below:

This example shows how the EEFSR, thanks to the vector (ex)R’, unit vector ex

“seen from (R’)”, makes it possible to visualize the exclusively relativistic effect of

length contraction of a moving reference frame [5-6].

CONCLUSION

EEFSR is  a  reformulation  of  special  relativity  in  a  purely  Euclidean  geometric

framework. As such, its predictive power is the same as that of special relativity (see

the  equations  of  the  Lorentz  transformation).  However,  its  geometric  framework,

similar  to  the  geometric  framework of  Galilean  relativity,  but  with  an  additional

dimension, tends to present  EEFSR as a "natural" formulation of special relativity,

even  if,  historically,  it  is  the  pseudo-Euclidean  formulation  of  Minkowski  who

prevailed.

But the major educational interest of this Euclidean formulation is that it allows

the  quantities  ct,  x and  s to  be  represented  on  the  same  diagram (which  is  not

possible, for example, with a Minkowski diagram), which can help to visualization of

relativistic  effects  not  always  easy  to  understand  by  people  unfamiliar  with
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Minkowski's formalism, such as the  time dilation or the  length  contractions which

appear during the study of very fast particles like muons.

Why  then  not  imagine  the  EEFSR and  its  diagrams  as  a  bridge  between

Galilean relativity and special relativity in its Minkowski formulation, whose pseudo-

Euclidean  metric,  although  less  easy  to  master  than  the  Euclidean  metric,  is

nevertheless necessary, currently, to the expression of modern theories of physics2?
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APPENDIX 1

Unit space vector of a reference frame in motion seen 

from a reference frame at rest

To determine the relationship between the unit vector  ex and the unit vector (ex’)R,

which is the unit  vector  ex’ “seen from (R)”, we will  imagine the situation where

photons are emitted at time t = t’ = 0 by a source S and are received by the observers

Ω and  Ω’ attached respectively  to  the  reference  frames  (R)  and  (R’),  (R)  being

considered  at rest and (R’)  moving at speed v  with respect to  (R).  The diagram in

Figure A1.1 below represents this situation.
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Figure A1.1 – At time t = t’ = 0 the source S emits photons (orange arrows). These photons 
reach the observer Ω (light orange arrow), spatially at rest in (R), at time tΩ = xS / c (Ω is then 
in position (1)). They reach the observer Ω' (dark orange arrow), stationary in the reference 
frame (R') which goes at speed v in (R), at time tΩ’ (Ω' is then in position (2), with the 
coordinate sΩ’ = ctΩ’ /γ along the s-axis). We show that the instant tΩ’  is such that the abscissa 
xS’ of the source S measured in (R') verify the relation xS’.(ex’)R = (ctΩ’ /γ2).ex, where (ex’)R is 
the unit vector ex’ carried by (R') (which, at rest, is equal to  ex) « as seen from the reference 
frame (R) ». A priori (ex’)R ≠ ex.

x’ (R’)



As photons move through space at speed c, they have no proper time. Observer  Ω,

attached to the reference frame (R), will therefore receive the photons at time tΩ = xS/c

(position (1) on the diagram). At what time tΩ’ will observer Ω’ receive the photons

(position (2) on the diagram)? We read on the diagram that it is the instant  tΩ’ such

that:

xS = ctΩ = ctΩ’ + v.tΩ’,

ctΩ’ being the distance traveled by the photons, in (R), between the source S and their 

reception by Ω’ (dark orange arrow in figure A1.1). We deduce that:

ctΩ = ctΩ’(1+v/c).

However, still according to the diagram in Figure A1.1:

xS’ (ex’)R = (xS – xO’) ex = (ctΩ – vtΩ) ex = ctΩ (1-v/c) ex 

since xS = ctΩ et xO’=  v tΩ.

We therefore deduce that:

xS’ (ex’)R = ctΩ’(1+v/c) (1-v/c) ex = ctΩ’ (1-v2/c2) ex = (ctΩ’ /γ2) ex.   (22)
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Figure A1.2 – In the reference frame (R’) the source S is at the abscissa xS’. The 
photons emitted by S (dark orange arrow) reach the observer Ω' at rest in (R') at time tΩ’ 
(Ω' is then in position (2), with the invariant coordinate sΩ’ = ctΩ’ /γ along the s-axis).  The 
abscissa xS’ therefore verifies the relationship xS’ = sΩ’ = ctΩ’ /γ. As xS’.(ex’)R = (ctΩ’ /γ2).ex 
(see figure A1.1), we deduce that (ex’)R = ex /γ.



Let us now observe the situation, represented in the diagram in Figure A1.2, in the

reference frame (R’).

It immediately appears that:

xS’ = sΩ’ = ctΩ’ / γ. (23) 

Equations (22) and (23) therefore imply that:

(ctΩ’ / γ) (ex’)R = (ctΩ’ /γ2) ex

from which we deduce that:

(ex’)R = ex/ γ.

The relationship (ex)R’ = ex’ /γ is obtained in the same way, but by first starting from the

situation seen from (R’), then by comparing it to the situation seen from (R).
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APPENDIX 2

Transformation law for time t

Relativistic composition law for velocities

TRANSFORMATION LAW FOR TIME t

The invariance of s allows us to write:

s2 = (ct)2 – x2 = (ct’)2 – x’2  avec x’ = γ(x – vt)

hence:

(ct)2 – x2 = (ct’)2 – γ2(x – vt)2

By expanding this expression we obtain:

(ct)2 – x2 = (ct’)2 – γ2x2 – γ2v2t2+2γ2xvt = (ct’)2 – γ2x2 – γ2β2(ct)2+2γ2xβct, with β = v/c,

hence :

(ct’)2 = (ct)2 – x2 + γ2x2 + γ2β2(ct)2 - 2γ2xβct = (ct)2(1 + γ2β2) – x2(1 – γ2) -  2γ2xβct.

Now:

1 + γ2β2 = γ2 et  1 – γ2 = - γ2β2

so:

(ct’)2 = γ2(ct)2 + γ2β2x2 -  2γ2xβct = γ2((ct)2 + β2x2  - 2xβct) =  γ2(ct – βx)2.

We deduce that :

ct’ = γ(ct – vx/c).

RELATIVISTIC COMPOSITION LAW FOR VELOCITIES
The  equations  of  the  Lorentz  transformation  make  it  possible  to  establish  the
composition law for velocities in special relativity. Indeed, by differentiating x’= γ (x
– vt) we obtain:

dx’  = γ (dx – vdt) (24)

and by differentiating ct’ = γ (ct – vx/c) we obtain:
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cdt’ = γ (cdt – vdx/c). (25)

By dividing Equation (24) by Equation (25), we obtain:

dx’/dt’ = (dx – vdt) / (dt – vdx/c2) = (dx/dt – v) / (1- v(dx/dt)/c2).

By setting  vP’ = dx’/dt’ and vp =  dx/dt, it comes:

vP’ = 
vP−v

1−v p . v /c2 .
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