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Abstract

Minkowski 4-vectors are written in Euclidean form. It is shown that in this way the physical meaning

of their components can be made more intuitive and directly associated with geometric properties in

Euclidean space-time.
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1 Displacement

If the Minkowski 4-vector components for displace-
ment in 4D space-time

ds2 = d(ct)2 − dx2 − dy2 − dz2 (1)

are alternatively written in Euclidean form (see also
[1]) they read:

d(ct)2 = ds2+dx2+dy2+dz2 = d(cτ)2+dx2+dy2+dz2

(2)
Equations 1 and 2 both contain the same informa-
tion but the essential di�erence is that the roles of
the variables have changed. In Eq. 1, ds2 is the
Lorentz invariant. In Eq. 2, dct2 is the Lorentz
invariant. The mathematics of this switch remain
consistent with special relativity. Equation 2 shows
that the speed in the Euclidean time dimension,
which is now formed by the proper time τ is:

v2τ = c2 − v2space (3)

The displacement in the proper time dimension for
a moving object in an interval dt (according to an
observer at rest) equals:

v2τdt
2 = c2dt2 − v2xdt2 − v2ydt2 − v2zdt2

= c2dt2 − dx2 − dy2 − dz2

= ds2 (4)

So ds is now no longer the invariant Minkowski dis-
placement but the displacement in the proper time
dimension. The factor dct that played an equiva-
lent role in the Minkowski 4-vector has become the
invariant 4D displacement in Euclidean space-time.
This is visualized in Fig. 1. Here the spatial dis-
placement

√
dx2 + dy2 + dz2 is written as a single

variable dA. The 'Minkowski triangle' (left) then
is:

ds2 = dct2 − dA2 (5)

and the 'Euclidean triangle' (right) is:

dct2 = ds2 + dA2 (6)

The dotted lines in Fig. 1 represent the values for
dA and dct that would result from a Lorentz trans-
formation.
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Figure 1: Geometric visualization of Minkowski
and Euclidean displacement 4-vectors. Spatial dis-
placement is represented as dA.

2 Velocity

We will henceforth use, conform [1], the notation
χ = ds/dt = cdτ/dt for the speed in the proper
time dimension and v for spatial speed. An at-
tractive bene�t in the Euclidean components of the
4-vector for velocity is that they are now the reg-
ular derivatives of the displacement 4-vector com-
ponents with respect to t:(

d(ct)

dt

)2

=

(
ds

dt

)2

+

(
dA

dt

)2

(7)

or

c2 = χ2 + v2 (8)

In Fig. 2 this is again illustrated.
The corresponding Minkowski 4-vector compo-

nents for velocity are derived by multiplying the
time derivative of the Minkowski displacement 4-
vector with the factor γ = 1/

√
1− v2/c2,

c2 = γ2(c2 − v2) (9)

which is the same as taking the derivative with
respect to the proper time τ = t/γ instead of t.
Without this factor the 4-vector does not yield a
Lorentz invariant value. Figure 3 shows the back-
ground of this multiplication and here it shows
that, from an Euclidean perspective, the Minkowski
4-vector components seem to have a pure mathe-
matical function only. The components of the Eu-
clidean 4-vector on the other hand have an intuitive
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Figure 2: Geometric visualization of Minkowski
and Euclidean velocity 4-vectors.

Minkowskian

c

c
(i

n
v
ar

ia
n
t)

v

v

v

c
(i

n
v
ar

ia
n
t)

c

v

Euclidean

space

p
ro

p
er

 t
im

e

Figure 3: Geometry of Minkowski and Euclidean
velocity 4-vectors.

physical meaning: they represent the actual speeds
in Euclidean space and proper time. The vector-
sum of these has universal magnitude c and rotates

in 4D if the spatial velocity accelerates in 3D.

3 Acceleration

Figure 4 shows the geometry for the components
of, respectively, the Minkowski 4-vector for accel-
eration αM and the Euclidean one, αE. Here, a
di�erent geometric representation is chosen for the
factors γc and γv to remain consistent with the di-
rection of spatial velocity vector v (note that the
scalar values of these factors have been used in the
previous examples). The components of the Eu-
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Figure 4: Geometry of Minkowski and Euclidean
acceleration 4-vectors.

clidean acceleration 4-vector are

αEµ
=
dUEµ

dt
= (dχ/dt, dv/dt) (10)

Any acceleration in 3D space corresponds to a ro-
tation in SO(4) of the Euclidean 4D velocity vector
UE with invariant magnitude c, implying that the
acceleration 4-vector must always be orthogonal to
it, or αE ·UE = 0. This is in agreement with the
Minkowski acceleration 4-vector αM with compo-
nents

αMν
= dUMν

/dτ

= [γd(γc)/dt, γd(γv)/dt]

= γ(cdγ/dt,vdγ/dt+ γdv/dt) (11)
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that is also orthogonal to the Minkowski velocity 4-
vector. The components for the Minkowski acceler-
ation 4-vector have their origin in the change of the
line elements γc and γv as is shown in the Figure.
As these line elements were shown to have a math-
ematical function only in Euclidean space-time, the
derived acceleration components will either. In the
Euclidean 4-vector on the other hand, dv/dt and
dχ/dt form the orthogonal vector components and
these maintain their intuitive physical interpreta-
tion, while the magnitude of αE is invariant under
rotations in SO(4) (see also the next Section for
the physical signi�cance of this invariance). Note
that, although αM and αE in Fig. 4 are parallel,
in general their magnitudes are not equal.

4 Energy and momentum

Writing the Minkowski 4-vector for energy-
momentum

(m0c)
2 = (E/c)2 − p2 (12)

or alternatively

(m0c)
2 = (γm0c)

2 − (γm0v)2 (13)

in Euclidean form yields:

(γm0c)
2 = (m0c)

2 + (γm0v)2 (14)

The Euclidean form becomes transparent if the
identity c = γχ is used:

(γm0c)
2 = (γm0χ)2 + (γm0v)2 (15)

saying that the 4D momentum is the vector sum of
spatial and proper time momentum. Equation (14)
does however not yield an invariant. The factor γ,
resulting from the Minkowski 4-velocity prohibits
this.
The Euclidean relativistic Lagrangian for a freely

moving particle in 4D,

Λ = m0c
2 (16)

is a constant of motion as a result of the univer-
sal velocity magnitude c for the free particle in 4D
space-time (see also the derivation of Montanus in
[2]). This shows that, just as in the Euclidean 4-
velocity, γ must be left out in the Euclidean form,
which again yields m0c as an invariant:

(m0c)
2 = (m0χ)2 + (m0v)2 (17)

Note that the invariance of the 4D momentum is
also consistent with the invariance of the accelera-
tion αE that was discussed in the previous Section.
Since the acceleration is always orthogonal to the
velocity, the magnitude of the momentum vector
will not change.
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Figure 5: Minkowski and Euclidean components for
energy-momentum.

Figure 5 again visualizes the geometries.

5 Current density

The relativistic density ρ of a collection of moving
charges is de�ned as γρ0, where ρ0 is the charge
density in the rest frame of the moving charges, also
referred to as proper density. A derived quantity is
the current density 4-vector Jµ that is de�ned as:

Jµ = ρ0
dxµ
dτ

(18)

and is constructed quite similar to the energy-
momentum 4-vector:

pµ = m0
dxµ
dτ

. (19)

The current density 4-vector can be rewritten into
Euclidean form in the same way as with the energy-
momentum 4-vector:

(ρ0c)
2 = (γρ0c)

2 − (γρ0v)2

(γρ0c)
2 = (ρ0c)

2 + (γρ0v)2

(γρ0c)
2 = (γρ0χ)2 + (γρ0v)2 (20)
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saying that the 4-dimensional current density is the
vector sum of the current density in space and the
current density in the proper time dimension. A
similar e�ect of the factor γ is seen in the current
density as in the energy-momentum 4-vector and
this suggests that there will also be a justi�cation
that allows to leave out this factor in the equa-
tion for current density to reach an invariant result,
equivalent to the relativistic Lagrangian for energy-
momentum. That relativistic Lagrangian more or
less represents the view on energy that a 'Hyper-
spacelander' with full 4D observational skills would
have. Such an upgrade from 3D to 4D observational
skills eliminates length contraction e�ects (length is
invariant in 4D) and for the 4D observer this turns
the relativistic charge density ρ into the proper den-
sity ρ0. It is therefor justi�ed to leave out γ in Eq.
(20).

With a single unit of charge the charge density
will be the same for all inertial frames (charge is
invariant). The equation for a single charge reads:

(ρ0c)
2 = (ρ0χ)2 + (ρ0v)2 (21)

and is the only equation that is on equal footing
with the Euclidean 4-vector for momentum, Eq.
(14), when applied to a single elementary mass
particle. It strikes that the factor γ is eliminated
automatically here. There is no need for an up-
grade from 3D to 4D observational skills to jus-
tify any omission of γ like was done for the energy-
momentum 4-vector. This markedly distinguishes
the properties charge and current in the electro-
magnetic �eld from the propertiesmass and energy-

momentum in the gravity �eld and seems to sug-
gests a dimensional hierarchy, i.e., the electromag-
netic �eld seems to have one less dimension than
gravity.

6 Electromagnetic potential

Finally, the potential 4-vector Aµ = (φ, cA) for a
uniformly moving charge could be rewritten in Eu-
clidean form using the same method as used so far:

φ2 = K2 + c2
(
A2
x +A2

y +A2
z

)
(22)

with K still to be determined as the temporal com-
ponent in the Euclidean form. The magnitude of

the vector potential A is√
A2
x +A2

y +A2
z =

v

c2
φ (23)

while φ for a moving charge can be written in terms
of the retarded potential φr:

φ = γφr. (24)

Using these identities, K can be determined as:

K2 = γ2φ2r

(
1− v2

c2

)
= φ2r (25)

The Euclidean form thus reads:

φ2 = φ2r + c2
(
A2
x +A2

y +A2
z

)
(26)

The variable φ is however not invariant. In order
to make the 4-vector invariant under rotations in
SO(4) (the Euclidean equivalent of Lorentz trans-
formations, see also [3]) the expression would have
to be multiplied with 1/γ but this is inconsistent
with the approach in the other 4-vectors where the
aim was to get rid of the gamma's in the Euclidean
expressions. This raises the question whether the
classical potential 4-vector could be the Euclidean
form already, although at �rst sight this seems in
con�ict with the traditional +−−− pattern in its
components, necessary to yield an invariant.
Various operations on the potential 4-vector, like

e.g. the derivation of the �elds of E and B in Fµν =
∇µAν − ∇νAµ, involve the operator ∇µ which is
de�ned as:

∇µ =

(
∂

∂t
,−∇

)
(27)

The derivative with respect to t in ∂/∂t is incon-
sistent with the derivation with respect to τ in
Minkowski 4-vectors but consistent with the Eu-
clidean 4-vectors. Furthermore, the components φ
and A both already have intuitive physical mean-
ings, showing in particular from operations like
E = −∇φ − ∂A/∂t and B = ∇ × A. The pat-
tern + − −− therefor seems an intrinsic property
of electromagnetic potentials rather than being re-
lated to Minkowski geometry.
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